Z轉換(Z Transform)

Mathematics   Yoshio    Jul 28th, 2025 at 8:00 PM    8    0   

Z-transform

In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex valued frequency-domain (the z-domain or z-plane) representation.

It can be considered a discrete-time equivalent of the Laplace transform (the s-domain or s-plane). This similarity is explored in the theory of time-scale calculus.


Discretized system and Z-transform

\(u(t)\rightarrow H(s)\rightarrow y(t)\)

\(\left\{\begin{array}{l}\underline{\dot x}(t)=A\underline x(t)+\underline bu(t)\\y(t)=\underline c\underline x(t)\end{array}\right.\)

\(\underline x(t)=e^{\underline At}{\underline x}_0+\int_0^te^{{\underline A(t-\tau)}}\underline bu(\tau)\operatorname d\tau\)

\(t=kT\)

\(\underline x(kT)=e^{\underline AkT}{\underline x}_0+\int_0^{kT}e^{{\underline A(kT-\tau)}}\underline bu(\tau)\operatorname d\tau\)

\(\underline x((k+1)T)=e^{\underline A(k+1)T}{\underline x}_0+\int_0^{(k+1)T}e^{{\underline A((k+1)T-\tau)}}\underline bu(\tau)\operatorname d\tau\)

\(=e^{\underline AT}(e^{\underline AkT}{\underline x}_0+\int_0^{(k+1)T}e^{{\underline A(kT-\tau)}}\underline bu(\tau)\operatorname d\tau)\)

\(=e^{\underline AT}(\underline x(kT)+\int_{kT}^{(k+1)T}e^{{\underline A(kT-\tau)}}\underline bu(\tau)\operatorname d\tau)\)

\(=e^{\underline AT}\underline x(kT)+\int_{kT}^{(k+1)T}e^{{\underline A((k+1)T-\tau)}}\underline bu(\tau)\operatorname d\tau)\)

\(\left\{\begin{array}{l}\underline x(kT)=e^{\underline AkT}{\underline x}_0+\int_0^{kT}e^{{\underline A(kT-\tau)}}\underline bu(\tau)\operatorname d\tau\\\underline x((k+1)T)=e^{\underline AT}\underline x(kT)+\int_{kT}^{(k+1)T}e^{{\underline A((k+1)T-\tau)}}\underline bu(\tau)\operatorname d\tau)\end{array}\right.\)



Let \(u(t)=u(kT)\;for\;kT\leq t<(k+1)T\)

\(\underline x(kT)=\underline x\lbrack k\rbrack,\;u(kT)=u\lbrack k\rbrack\)

then \(\underline x\lbrack k+1\rbrack=e^{\underline AT}\underline x\lbrack k\rbrack+(\int_{kT}^{(k+1)T}e^{{\underline A((k+1)T-\tau)}}\underline b\operatorname d\tau)u\lbrack k\rbrack\)

Let \(\alpha=\tau-kT\) then \(d\alpha=d\tau\)

\(\Rightarrow\underline x\lbrack k+1\rbrack=e^{\underline AT}\underline x\lbrack k\rbrack+(\int_0^Te^{{\underline A(T-\alpha)}}\underline b\operatorname d\tau)u\lbrack k\rbrack\)

\(\Rightarrow\underline x\lbrack k+1\rbrack={\underline A}_T\underline x\lbrack k\rbrack+{\underline b}_Tu\lbrack k\rbrack\)

where \({\underline A}_T=e^{\underline AT},\;{\underline b}_T=\int_0^Te^{{\underline A(T-\alpha)}}\underline b\operatorname d\tau\)

Similar to \(\left\{\begin{array}{l}\underline x\lbrack k+1\rbrack=\underline A\underline x\lbrack k\rbrack+\underline bu\lbrack k\rbrack\\y\lbrack k\rbrack=\underline c\underline x\lbrack k\rbrack+d\lbrack k\rbrack\end{array}\right.\)

A direct method to discretize the system is given as,
\(\underline{\dot x}(t)\approx\frac{\underline x\lbrack k+1\rbrack-\underline x\lbrack k\rbrack}T\)

\(\therefore\frac{\underline x\lbrack k+1\rbrack-\underline x\lbrack k\rbrack}T=\underline A\underline x\lbrack k\rbrack+\underline bu\lbrack k\rbrack\)

\(\Rightarrow\underline x\lbrack k+1\rbrack\approx(\underline I+T\underline A)\underline x\lbrack k\rbrack+T\underline bu\lbrack k\rbrack,\;where\;T\;is\;small\;enough\)

\(\therefore e^{{\underline AT}}\approx\underline I+T\underline A\)

\(\int_0^Te^{{\underline A(T-\alpha)}}\underline b\operatorname d\tau\approx T\underline b\)

Analysis of \(e^{{\underline AT}}\)

\((e^x)'=e^x\)

\(\left\{\begin{array}{l}e^x=1+x+\frac1{2!}x^2+\frac1{3!}x^3+\cdots\\e^{{\underline AT}}=\underline I+T\underline A+\cancel{\frac1{2!}{(T\underline A)}^2}+\cancel{\frac1{3!}{(T\underline A)}^3}+\cdots\end{array}\right.\)

\(\int_0^Te^{{\underline A(T-\alpha)}}\underline b\operatorname d\tau=\int_0^T\lbrack\underline I+(T-\alpha)\underline A+\frac1{2!}{(T-\alpha)}^2\underline A^2+\frac1{3!}{(T-\alpha)}^3\underline A^3+\cdots\rbrack\underline b\operatorname d\tau\)

\(=(T\underline I+\cancel{T^2}\dots+\cancel{T^k}+\dots)\underline b\)

\(\simeq T\underline b\)

Linear algebra : diagonized

MATLAB \(expm(\underline A)\)

For a physical system, \(\underline A\) is generally stable.
That means all the eigenvalues of \(\underline A\) are located in the left-half complex plane.

\(e^{\underline AT}\rightarrow?\;(eigenvalues)\)

\(e^{\underline AT}\approx\underline I+T\underline A\)


[Ex] \(\underline A=\begin{bmatrix}0&1\\-2&-3\end{bmatrix}\)

\(\left|\lambda\underline I-\underline A\right|=\begin{vmatrix}\lambda&-1\\2&\lambda+3\end{vmatrix}=\lambda^2+3\lambda+2\)

\(\left|\lambda\underline I-\underline A\right|=0\;\Rightarrow\;\lambda=-1,\;-2\) stable




\(\left\{\begin{array}{l}\underline A{\underline v}_1=-{\underline v}_1\\\underline A{\underline v}_2=-2{\underline v}_2\end{array}\Rightarrow\right.\underline A\underbrace{\begin{bmatrix}{\underline v}_1&{\underline v}_2\end{bmatrix}}_\underline V=\underbrace{\begin{bmatrix}{\underline v}_1&{\underline v}_2\end{bmatrix}}_\underline V\underbrace{\begin{bmatrix}-1&0\\0&-2\end{bmatrix}}_\underline\Lambda\)

\(\underline A=\underline V\underline\Lambda\underline V^{-1}\)

\(\underline A^n=\underline V\underline\Lambda^n\underline V^{-1}=\underline V\begin{bmatrix}{(-1)}^n&0\\0&{(-2)}^n\end{bmatrix}\underline V^{-1}\)

\(e^{\underline AT}=\sum_{k=0}^\infty\frac1{k!}{(T\underline A)}^k\)

\(=\sum_{k=0}^\infty\frac1{k!}T^k\underline V\underline\Lambda^k\underline V^{-1}\)

\(=\underline V(\sum_{k=0}^\infty\frac1{k!}T^k\underline\Lambda^k)\underline V^{-1}\)

\(=\underline V(\sum_{k=0}^\infty\frac1{k!}\begin{bmatrix}{(-1)}^kT^k&0\\0&{(-2)}^kT^k\end{bmatrix})\underline V^{-1}\)

\(=\underline V\begin{bmatrix}\sum_{k=0}^\infty\frac1{k!}{(-1)}^kT^k&0\\0&\sum_{k=0}^\infty\frac1{k!}{(-2)}^kT^k\end{bmatrix}\underline V^{-1}\)

\(=\underline V\begin{bmatrix}e^{-T}&0\\0&e^{-2T}\end{bmatrix}\underline V^{-1}\)

\(\left|\lambda\underline I-e^{\underline AT}\right|=\left|\lambda\underline I-\underline V\begin{bmatrix}e^{-T}&0\\0&e^{-2T}\end{bmatrix}\underline V^{-1}\right|\)

\(=\left|\underline V\lambda\underline I\underline V^{-1}-\underline V\begin{bmatrix}e^{-T}&0\\0&e^{-2T}\end{bmatrix}\underline V^{-1}\right|\)

\(=\left|\underline V(\lambda\underline I-\begin{bmatrix}e^{-T}&0\\0&e^{-2T}\end{bmatrix})\underline V^{-1}\right|\)

\(=\left|\underline V\right|\left|\lambda\underline I-\begin{bmatrix}e^{-T}&0\\0&e^{-2T}\end{bmatrix}\right|\left|\underline V^{-1}\right|\)

\(=\left|\lambda\underline I-\begin{bmatrix}e^{-T}&0\\0&e^{-2T}\end{bmatrix}\right|\)

\(e^{\underline AT}\) eigenvalues are \(e^{-T},\;e^{-2T}\)

where \(e^{-T}=1-T+\cancel{\frac1{2!}{(-T)}^2}+\cancel\cdots\approx1-T<1\)

\(e^{-2T}\approx1-2T<1\)

\(\underline A\;\rightarrow{\left.e^{\lambda t}\right|}_{t\rightarrow\infty}=0\)

\(e^{\underline AT}\rightarrow\left|\lambda\right|<1\)

\(\left\{\begin{array}{l}\underline x\lbrack k+1\rbrack=0.9\underline x\lbrack k\rbrack\rightarrow stable\\\underline x\lbrack k+1\rbrack=1.1\underline x\lbrack k\rbrack\rightarrow unstable\end{array}\right.\)


Consider a discretized system

\(\left\{\begin{array}{l}\underline x\lbrack k+1\rbrack=\underline A\underline x\lbrack k\rbrack+\underline bu\lbrack k\rbrack\\y\lbrack k\rbrack=\underline c\underline x\lbrack k\rbrack+\underbrace{\cancel{d\lbrack k}\rbrack}_{not\;considered}\end{array}\right.\)

difference equation = ?

\(\underline A\in R^{n\times n}\;eigenvalues\;\left|\lambda\right|<1\)

\(\left|\lambda\underline I-\underline A\right|=\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0\)

According to Cayley-Hamilton Theorem

\(y\lbrack k+n\rbrack+a_{n-1}y\lbrack k+n-1\rbrack+\cdots+a_1y\lbrack k+1\rbrack+a_0y\lbrack k\rbrack\)
\(=b_nu\lbrack k+n\rbrack+b_{n-1}u\lbrack k+n-1\rbrack+\cdots+b_1u\lbrack k+1\rbrack+b_0u\lbrack k\rbrack\)

difference equation


Bilateral Z-transform Pair

Although Z transforms are rarely solved in practice using integration, we will provide the bilateral Z transform pair here for purposes of discussion and derivation. These define the forward and inverse Z transformations. Notice the similarities between the forward and inverse transforms. This will give rise to many of the same symmetries found in Fourier analysis.

Z Transform

\(X(z)=\sum_{n=-\infty}^\infty x\lbrack n\rbrack z^{-n}\)

Inverse Z Transform

\(x\lbrack n\rbrack=\frac1{2\pi j}\oint_rX(z)z^{n-1}\mathrm dz\)

unilateral Z-transform

\(X(z)=\sum_{n=0}^\infty x\lbrack n\rbrack z^{-n}\)

which is useful for solving the difference equations with nonzero initial conditions. This is similar to the unilateral Laplace Transform in continuous time.

\(Z\{x\lbrack k\rbrack\}=X(z)=\sum_{k=0}^\infty x\lbrack k\rbrack z^{-k}\)


[Ex] \(x\lbrack k\rbrack=1,\;for\;k=0,1,2,\cdots\)

\(Z\{x\lbrack k\rbrack\}=\sum_{k=0}^\infty x\lbrack k\rbrack z^{-k}=1+z^{-1}+z^{-2}+\cdots+{\left.z^{-n}\right|}_{n\rightarrow\infty}\)

\(=\frac1{1-z^{-1}}=\frac z{z-1},\;\left|z\right|>1\)


Sampling data

\(x_s(t)=\sum_{k=0}^\infty x(t)\delta(t-kT)\)

\(\sum_{k=-\infty}^\infty\delta(t-kT)=\sum_{k=-\infty}^\infty c_ke^{jk\omega_0T}\)

\(X_s(s)=\mathcal F\{\sum_{k=0}^\infty x(t)\delta(t-kT)\}\)

\(=\sum_{k=0}^\infty x(kT)\mathcal F\{\delta(t-kT)\}\)

\(=\sum_{k=0}^\infty x(kT)e^{-skT}\)


The Laplace Transform

\(X(s)\triangleq{\mathcal L}_s\{x\}\triangleq\int_0^\infty x(t)e^{-st}\operatorname dt\)

\(X(j\omega)=\int_0^\infty x(t)e^{-j\omega t}dt\)

Relation to the Z-Transform

\(X_d(z)\triangleq\sum_{n=0}^\infty x_d(nT)z^{-n}\)

If we define \(z=e^{sT}\)
\(X_d(e^{sT})\triangleq\sum_{n=0}^\infty x_d(nT)e^{-snT}\)

As the sampling interval \(T\) goes to zero,
\(\lim_{T\rightarrow0}X_d(e^{sT})T=\lim_{T\rightarrow0}\sum_{n=0}^\infty x_d(t_n)e^{-st_n}T\)

\(=\int_0^\infty{x_d(t)e^{-st}}\operatorname dt\triangleq X(s)\)

where \(t_n=nT\) and \(\triangle t\triangleq t_{n+1}-t_n=T\)

The Z-Transform (times the sampling interval \(T\)) of a discrete time signal \(x_d(nT)\) approaches, as \(T\rightarrow0\), the Laplace Transform of the the underly-ing continuous-time signal \(x_d(t)\)

Note that the \(z\) plane and \(s\) plane are related by

\[z=e^{sT}\]

In particular, the discrete-time frequency axis \(\omega_d\in(-\frac{\pi}T,\frac{\pi}T)\) and continuous-time frequency axis \(\omega_a\in(-\infty,\infty)\) are related by

\[e^{j\omega_dT}=e^{j\omega_aT}\]


Laplace Transform

\(x_s(t)\rightarrow X_s(s)=\sum_{k=0}^\infty x\lbrack k\rbrack{(e^{-sT})}^k\)

\(\sum_{k=0}^\infty x(t)\delta(t-kT)\)

Z-Transform

\(x\lbrack k\rbrack\rightarrow X(z)=\sum_{k=0}^\infty x\lbrack k\rbrack z^{-k}\)

\(X_s(s)={\left.X(z)\right|}_{z=e^{sT}}\)


Z-Transform for discrete signals


(1) The Unit Impulse Signal (Delta function)

\(x\lbrack k\rbrack=\delta\lbrack k\rbrack=\left\{\begin{array}{l}1,\;k=0\\0,\;k\neq0\end{array}\right.\)

\(X(z)=\mathcal Z\{x\lbrack k\rbrack\}=\sum_{k=0}^\infty x\lbrack k\rbrack z^{-k}=z^{-0}=1\)

(2) The Exponential Signal

\(x\lbrack k\rbrack=a^k,\;a>0\)

\(X(z)=\sum_{k=0}^\infty x\lbrack k\rbrack z^{-k}=\sum_{k=0}^\infty a^kz^{-k}\)

\(=\sum_{k=0}^\infty{(\frac za)}^{-k}=\frac1{1-{(\frac za)}^{-1}},\;\vert(\frac za)\vert>1\)

\(=\frac{\frac za}{\frac za-1}=\frac z{z-a},\;\vert z\vert>a\)

(3) The Unit Step Signal

\(s\lbrack k\rbrack=1,\;k=0,1,2,\cdots\)

\(X(z)=\frac z{z-1},\;\vert z\vert>1\)

(4) The Natural Exponential Signal

\(x\lbrack k\rbrack=e^{\alpha k}={(e^\alpha)}^k,\;\alpha\in R\)

\(X(z)=\frac z{z-e^\alpha},\;\vert z\vert>e^\alpha\)

(5) The Complex Exponential Signal

\(x\lbrack k\rbrack=e^{j\beta k},\;\beta\in R\)

\(X(z)=\frac z{z-e^{j\beta}},\;\vert z\vert>\vert e^{j\beta}\vert=1\)

(6) The Trigonometric Signal

\(\mathcal Z\{e^{j\beta k}\}=\mathcal Z\{\cos\beta k\}+j\mathcal Z\{\sin\beta k\}\)

\(X(z)=\frac z{z-e^{j\beta}}=\frac z{(z-\cos\beta)-j\sin\beta}\)

\(=\frac{z\lbrack(z-\cos\beta)+j\sin\beta\rbrack}{{(z-\cos\beta)}^2+\sin^2\beta}\)

\(=\frac{z(z-\cos\beta)+jz\sin\beta}{z^2-2\cos\beta z+1}\)

\(\therefore\mathcal Z\{\cos\beta k\}=\frac{z(z-\cos\beta)}{z^2-2\cos\beta z+1}\)

\(\mathcal Z\{\sin\beta k\}=\frac{z\sin\beta}{z^2-2\cos\beta z+1}\)

(7) The Unit Ramp Sequence

\(r\lbrack k\rbrack=k\)

\(R(z)=\sum_{k=0}^\infty kz^{-k}=z^{-1}+2z^{-2}+3z^{-3}+\cdots\)

\(zR(z)=1+2z^{-1}+3z^{-2}+4z^{-3}+\cdots\)

\(zR(z)-R(z)=1+z^{-1}+z^{-2}+z^{-3}+\cdots=\frac1{1-z^{-1}}=\frac z{z-1},\;\vert z\vert>1\)

\(R(z)=\frac z{{(z-1)}^2},\;\vert z\vert>1\)


Z-Transform Properties

(1) Linearity

\(\mathcal Z\{ax\lbrack k\rbrack+by\lbrack k\rbrack\}=a\mathcal Z\{x\lbrack k\rbrack\}+b\mathcal Z\{y\lbrack k\rbrack\}\)

(2) Time Shifting

m-delayed signal \(x\lbrack k-m\rbrack,\;m>0\)

\(\mathcal Z\{x\lbrack k-m\rbrack\}=\sum_{k=0}^\infty x\lbrack k-m\rbrack z^{-k}\)

\(let\;p=k-m\)

\(=\sum_{p=-m}^\infty x\lbrack p\rbrack z^{-(p+m)}=\sum_{p=0}^\infty x\lbrack p\rbrack z^{-(p+m)}=z^{-m}\sum_{p=0}^\infty x\lbrack p\rbrack z^{-p}\)

\(\mathcal Z\{x\lbrack k-m\rbrack\}=z^{-m}X(z)\)


m-advanced signal \(x\lbrack k+m\rbrack,\;m>0\)

\(\mathcal Z\{x\lbrack k+m\rbrack\}=z^mX(z)-z^m\underbrace{\sum_{p=0}^{m-1}x\lbrack p\rbrack z^{-p}}_{x\lbrack0\rbrack,x\lbrack1\rbrack,\cdots,x\lbrack m-1\rbrack,\;initial\;values}\)


\(\mathcal Z\{x\lbrack k+m\rbrack\}=\sum_{k=0}^\infty x\lbrack k+m\rbrack z^{-k}\)

\(q=k+m,\;k=q-m,\;q:m\rightarrow\infty\)

\(\mathcal Z\{x\lbrack k+m\rbrack\}=\sum_{q=m}^\infty x\lbrack q\rbrack z^{-q+m}\)

\(=z^m\sum_{q=m}^\infty x\lbrack q\rbrack z^{-q}\)

\(={z^m(}\sum_{q=0}^\infty x\lbrack q\rbrack z^{-q}-\sum_{q=0}^{m-1}x\lbrack q\rbrack z^{-q})\)

\(=z^m\sum_{q=0}^\infty x\lbrack q\rbrack z^{-q}-\sum_{q=0}^{m-1}x\lbrack q\rbrack z^{m-q}\)

\(=z^mX(z)-(x\lbrack0\rbrack z^m+x\lbrack1\rbrack z^{m-1}+\cdots+x\lbrack m-1\rbrack z)\)


Time Shifting Property of Z-Transform

Statement – The time shifting property of Z-transform states that if the sequence \(\mathrm{\mathit{x\left ( n \right )}}$ is shifted by n0 in time domain, then it results in the multiplication by \(\mathrm{\mathit{z^{-n_{\mathrm{0}}}}}\) in the z-domain. Therefore, if

\(\mathrm{\mathit{x\left ( n \right )\overset{ZT}{\leftrightarrow}X\left ( z \right );\: \: \mathrm{ROC}\mathrm{\, =\, }\mathit{R} }}\)

With zero initial conditions.

Then, according to the time shifting property,

\(\mathrm{\mathit{x\left ( n-n_{\mathrm{0}} \right )\overset{ZT}{\leftrightarrow}z^{-n_{\mathrm{0}}}\, X\left ( z \right )}}\)

With ROC = R, except for the possible addition and deletion of ? = 0 or ? = ∞

Proof

From the definition of the Z-transform, we have,

\(\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}\)

\(\mathrm{\mathit{\therefore Z\left [ x\left ( n-n_{\mathrm{0}} \right ) \right ]\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n-n_{\mathrm{0}} \right )z^{-n}}}\)

Substituting \(\mathrm{\mathit{\left ( n-n_{\mathrm{0}}\right )=m }}\) in the above summation, then we have,

\(\mathrm{\mathit{Z\left [ x\left ( n-n_{\mathrm{0}} \right ) \right ]\mathrm{\, =\, }\sum_{m\mathrm{\, =\, }-\infty }^{\infty }x\left ( m \right )z^{-\left ( m\mathrm{\, +\, }n_{\mathrm{0}} \right )}}}\)

\(\mathrm{\mathit{\Rightarrow Z\left [ x\left ( n-n_{\mathrm{0}} \right ) \right ]\mathrm{\, =\, }z^{-n_{\mathrm{0}}}\sum_{m\mathrm{\, =\, }-\infty }^{\infty }x\left ( m \right )z^{-m}\mathrm{\, =\, }z^{-n_{\mathrm{0}}}X\left ( z \right ) }}\)

\(\mathrm{\mathit{\therefore Z\left [ x\left ( n-n_{\mathrm{0}} \right ) \right ]\mathrm{\, =\, }z^{-n_{\mathrm{0}}}X\left ( z \right )}}\)

Also, it can be represented as,

\(\mathrm{\mathit{x\left ( n-n_{\mathrm{0}} \right )\overset{ZT}{\leftrightarrow}z^{-n_{\mathrm{0}}}X\left ( z \right )}}\)

Similarly, if signal is advanced in time, then according to the time shifting property, we get,

\(\mathrm{\mathit{x\left ( n\mathrm{\, +\, }n_{\mathrm{0}} \right )\overset{ZT}{\leftrightarrow}z^{n_{\mathrm{0}}}X\left ( z \right )}}\)

Also, if the initial conditions are not neglected, then

  • The time shift property for time delay is,

    \(\mathrm{\mathit{Z\left [ x\left ( n-n_{\mathrm{0}} \right ) \right ]\mathrm{\, =\, }z^{-n_{\mathrm{0}}}X\left ( z \right )\mathrm{\, +\, }z^{-n_{\mathrm{0}}}\sum_{p\mathrm{\, =\, }\mathrm{1}}^{n_{\mathrm{0}}}x\left ( -p \right )z^{p}}}\)

  • The time shifting property for time advance is,

    \(\mathrm{\mathit{Z\left [ x\left ( n\mathrm{\, +\, }n_{\mathrm{0}} \right ) \right ]\mathrm{\, =\, }z^{n_{\mathrm{0}}}X\left ( z \right )-z^{n_{\mathrm{0}}}\sum_{p\mathrm{\, =\, }\mathrm{0}}^{n_{\mathrm{0}}-\mathrm{1}}x\left ( p \right )z^{-p}}}\)


(3) Premultiplying \(a^{-k}\)

\(\mathcal Z\{a^{-k}x\lbrack k\rbrack\}=\sum_{k=0}^\infty a^{-k}x\lbrack k\rbrack z^{-k}\)

\(=\sum_{k=0}^\infty x\lbrack k\rbrack{(az)}^{-k}\)

\(=X(az)\)


[Ex] \(\mathcal Z\{b^k\cos\beta k\}=\mathcal Z\{{(\frac1b)}^{-k}\cos\beta k\}\)

\(={\left.\frac{z^2-z\cos\beta}{z^2-2z\cos\beta+1}\right|}_{z\rightarrow\frac zb}\)

\(=\frac{{(\frac zb)}^2-(\frac zb)\cos\beta}{{(\frac zb)}^2-2(\frac zb)\cos\beta+1}\)

\(=\frac{z^2-zb\cos\beta}{z^2-2zb\cos\beta+b^2}\)


\(\mathcal Z\{\cos\beta k\}=\frac{z^2-z\cos\beta}{z^2-2z\cos\beta+1}\)
\(=\frac{z(z-\cos\beta)}{{(z-\cos\beta)}^2+\sin^2\beta}\)

\(\mathcal Z\{\sin\beta k\}=\frac{z\sin\beta}{{(z-\cos\beta)}^2+\sin^2\beta}\)


\(\mathcal Z\{b^k\sin\beta k\}=\frac{(\frac zb)\sin\beta}{{(\frac zb)}^2-2(\frac zb)\cos\beta+1}=\frac{zb\sin\beta}{z^2-2zb\cos\beta+b^2}\)


(4) Premultiplying \(k^n\)

\(X(z)=\sum_{k=0}^\infty x\lbrack k\rbrack z^{-k}\)

\(\frac d{dz}X(z)=-\sum_{k=0}^\infty kx\lbrack k\rbrack z^{-(k+1)}\)

\(=-\frac1z\sum_{k=0}^\infty kx\lbrack k\rbrack z^{-k}\)

\(=-\frac1z\mathcal Z\{kx\lbrack k\rbrack\}\)

\(\therefore\mathcal Z\{kx\lbrack k\rbrack\}=-z\frac d{dz}X(z)\)

\(\mathcal Z\{k^2x\lbrack k\rbrack\}=\mathcal Z\{k(kx\lbrack k\rbrack)\}\)

\(=-z\frac d{dz}(-z\frac d{dz}X(z))\)

\(={(-z\frac d{dz})}^2X(z)\)

\(\Rightarrow\mathcal Z\{k^nx\lbrack k\rbrack\}{(-z\frac d{dz})}^nX(z)\)


(5) Initial Value Theorem

\(X(z)=\sum_{k=0}^\infty x\lbrack k\rbrack z^{-k}\)

\(=x\lbrack0\rbrack+x\lbrack1\rbrack z^{-1}+x\lbrack2\rbrack z^{-2}+\cdots\)

\(X(\infty)=x\lbrack0\rbrack,\;x\lbrack0\rbrack={\left.X(z)\right|}_{z\rightarrow\infty}\)


(6) Final Value Theorem

\(X(z)\;poles\;located\;within\;the\;unit\;circle\)



\(\int_{-\infty}^\infty f(t)e^{-st}\operatorname dt\;includes\;imaginary\;axis\)

\(\sum_{k=0}^\infty x\lbrack k\rbrack z^{-k}\;includes\;unit\;circle\)


\(\mathcal Z\{x\lbrack k+1\rbrack-x\lbrack k\rbrack\}\)
\(=\sum_{k=0,\;N\rightarrow\infty}^Nx\lbrack k+1\rbrack z^{-k}-\sum_{k=0,\;N\rightarrow\infty}^Nx\lbrack k\rbrack z^{-k}\)
\(=zX(z)-x\lbrack0\rbrack z-X(z)\)

\(if\;z\rightarrow1,\;then\)
\(\sum_{k=0,\;N\rightarrow\infty}^Nx\lbrack k+1\rbrack z^{-k}-\sum_{k=0,\;N\rightarrow\infty}^Nx\lbrack k\rbrack z^{-k}=zX(z)-X(z)-x\lbrack0\rbrack\)

\(\therefore x\lbrack N+1\rbrack-\cancel{x\lbrack0\rbrack}={\left.zX(z)-X(z)-\cancel{x\lbrack0\rbrack}\right|}_{z\rightarrow1,\;N\rightarrow\infty}\)

\(\Rightarrow x\lbrack N+1\rbrack={\left.(z-1)X(z)\right|}_{z\rightarrow1,\;N\rightarrow\infty}\)

\(\Rightarrow x\lbrack\infty\rbrack={\left.(z-1)X(z)\right|}_{z\rightarrow1}\)

\(\therefore x\lbrack\infty\rbrack=\lim_{z\rightarrow1}(z-1)X(z)\)


(7) Convolution

\(h\lbrack k\rbrack\ast u\lbrack k\rbrack=\sum_{m=0}^\infty h\lbrack k-m\rbrack u\lbrack m\rbrack\)
\(=\sum_{m=0}^kh\lbrack k-m\rbrack u\lbrack m\rbrack\)

\(\mathcal Z\{h\lbrack k\rbrack\ast u\lbrack k\rbrack\}=\sum_{k=0}^\infty\sum_{m=0}^\infty h\lbrack k-m\rbrack u\lbrack m\rbrack z^{-k}\)
\(=\sum_{m=0}^\infty(\sum_{k=0}^\infty h\lbrack k-m\rbrack z^{-(k-m)})u\lbrack m\rbrack z^{-m}\)
\(=\sum_{m=0}^\infty H(z)u\lbrack m\rbrack z^{-m}\)
\(=H(z)U(z)\)


[Ex] \(X(z)=\frac z{z-0.9}\)

\(X_1(z)=\frac1{z-0.9}=z^{-1}X(z)\)

\(x\lbrack k\rbrack=0.9^k\)

\(x_1\lbrack k\rbrack=0.9^{k-1}\;(k\geq1)\)

\(\frac z{z-0.9}=\frac1{1-(0.9z^{-1})}\)

\(\frac1{1-r}=1+r+r^2+r^3+\dots\)

\(\frac z{z-0.9}=\underbrace1_{\delta\lbrack k\rbrack}+(0.9z^{-1})+{(0.9)}^2z^{-2}+{(0.9)}^3z^{-3}+\dots\)

\(x\lbrack0\rbrack=1,\;x\lbrack1\rbrack=0.9,\;x\lbrack2\rbrack={0.9}^2\)


The frequency response of a filter is determined by the interaction of a unit vector rotating around the unit circle with the poles and zeros of the filter.

The unit vector at rotation ω=0 corresponds to DC (0Hz).

The unit vector at rotation ω=π (180°) corresponds to Fs/2 or the Nyquist frequency.

When the tip of the unit vector gets close to a zero, the filter magnitude response is pushed downwards because zero is a root of the numerator polynomial. When the tip of the unit vector gets close to a pole, the filter magnitude response is pushed upwards because a pole is a root of the denominator polynomial.



Pole-zero locations are important for:
Wavelets
Symlets
B-splineis






Nyquist frequency

The Nyquist frequency (also called the folding frequency), named after Harry Nyquist, is a characteristic of a sampler. It converts a continuous function or signal into a discrete sequence, it is the frequency you need to sample an analog signal at in order to reconstruct it adequately. The Nyquist frequency is defined as 2*(freq. of original signal).

Usually in practical cases, 5 to 10 times frequency of original signal is selected.


Table : Properties of the Z-Transform
Property Signal Z-Transform Region of Convergence
Linearity \(\alpha x_{1}(n)+\beta x_{2}(n)\) \(\alpha X_{1}(z)+\beta X_{2}(z)\) At least \(\mathrm{ROC}_{1} \cap \mathrm{ROC}_{2}\)
Time shifing \(x(n-k)\) \(z^{-k}X(z)\) \(\mathrm{ROC}\)
Time scaling \(x(n/k)\) \(X(z^k)\) \(\mathrm{ROC}^{1/k}\)
Z-domain scaling \(a^{n}x(n)\) \(X(z/a)\) \(|a| \: \mathrm{ROC}\)
Conjugation \(\overline{x(n)}\) \(\overline{X}(\overline{z})\) \(\mathrm{ROC}\)
Convolution \(x_{1}(n) * x_{2}(n)\) \(X_{1}(z) X_{2}(z)\) At least \(\mathrm{ROC}_{1} \cap \mathrm{ROC}_{2}\)
Differentiation in z-Domain \([n x[n]]\) \(-\frac{d}{d z} X(z)\) \(\mathrm{ROC}\) = all \(\mathbb{R}\)
Parseval's Theorem \(\sum_{n=-\infty}^{\infty} x[n] \mathrm{x}*[n]\) \(\int_{-\pi}^{\pi} F(z) \mathbf{F} *(z) d z\) \(\mathrm{ROC}\)

Table : z-Transform Pairs
Signal, x[n] Z-transform, X(z) Region of Convergence (ROC)
\(\delta[n]\) \(1\) all \(z\)
\(\delta[n-m]\) \(z^{-m}\) all \(z \neq 0\)
\(u[n]\) \(\Large \frac{1}{1-z^{-1}}\) \(\lvert z \rvert > 1\)
\(a^{n}u[n]\) \(\Large \frac{1}{1-az^{-1}}\) \(\lvert z \rvert > \lvert a \rvert\)
\(na^{n}u[n]\) \(\Large \frac{az^{-1}}{(1-az^{-1})^2}\) \(\lvert z \rvert > \lvert a \rvert\)
\(-a^{n} u[-n-1]\) \(\Large \frac{1}{1-az^{-1}}\) \(\lvert z \rvert < \lvert a \rvert\)
\(-na^{n} u[-n-1]\) \(\Large \frac{az^{-1}}{(1-az^{-1})^2}\) \(\lvert z \rvert < \lvert a \rvert\)
\(\cos (\omega_0 n) u[n]\) \(\Large \frac{1 - z^{-1} cos(\omega_0)}{1-2z^{-1}cos (\omega_0) + z^{-2}}\) \(\lvert z \rvert > 1\)
\(\sin (\omega_0 n)u[n]\) \(\Large \frac{z^{-1} sin(\omega_0)}{1-2z^{-1}cos(\omega_0) + z^{-2}}\) \(\lvert z \rvert > 1\)
\(a^{n}\cos (\omega_0 n) u[n]\) \(\Large \frac{1 - az^{-1} cos(\omega_0)}{1-2az^{-1}cos (\omega_0) + a^{2}z^{-2}}\) \(\lvert z \rvert > \lvert a \rvert \)
\(a^{n}\sin (\omega_0 n)u[n]\) \(\Large \frac{az^{-1} sin(\omega_0)}{1-2az^{-1}cos(\omega_0) + a^{2}z^{-2}}\) \(\lvert z \rvert > \lvert a \rvert \)

Z-transform Table



Z-transform and Laplace transform



Region of convergence ROC

Z轉換

The region of convergence (ROC) is the set of points in the complex plane for which the Z-transform summation converges (i.e. doesn't blow up in magnitude to infinity):



ROC of z-transform is indicated with circle in z-plane.
ROC does not contain any poles.
If x(n) is a finite duration causal sequence or right sided sequence, then the ROC is entire z-plane except at z = 0.
If x(n) is a finite duration anti-causal sequence or left sided sequence, then the ROC is entire z-plane except at z = ∞.
If x(n) is a infinite duration causal sequence, ROC is exterior of the circle with radius a. i.e. |z| > a.
If x(n) is a infinite duration anti-causal sequence, ROC is interior of the circle with radius a. i.e. |z| < a.
If x(n) is a finite duration two sided sequence, then the ROC is entire z-plane except at z = 0 & z = ∞.

Table of common Z-transform pairs

Signal, \(x[n]\) Z-transform, \(X(z)\) ROC
1 \(\delta [n]\) 1 all z
2 \(\delta [n-n_{0}]\) \(z^{-n_{0}}\) \(z\neq 0\)
3 \(u[n]\,\) \({\frac {1}{1-z^{-1}}}\) \(|z|>1\)
4 \(-u[-n-1]\) \({\frac {1}{1-z^{-1}}}\) \(|z|<1\)
5 \(nu[n]\) \({\frac {z^{-1}}{(1-z^{-1})^{2}}}\) \(|z|>1\)
6 \(-nu[-n-1]\,\) \({\frac {z^{-1}}{(1-z^{-1})^{2}}}\) \(|z|<1\)
7 \(n^{2}u[n]\) \({\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}\) \(|z|>1\,\)
8 \(-n^{2}u[-n-1]\,\) \({\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}\) \(|z|<1\,\)
9 \(n^{3}u[n]\) \({\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}\) \(|z|>1\,\)
10 \(-n^{3}u[-n-1]\) \({\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}\) \(|z|<1\,\)
11 \(a^{n}u[n]\) \({\frac {1}{1-az^{-1}}}\) \(|z|>|a|\)
12 \(-a^{n}u[-n-1]\) \({\frac {1}{1-az^{-1}}}\) \(|z|<|a|\)
13 \(na^{n}u[n]\) \({\frac {az^{-1}}{(1-az^{-1})^{2}}}\) \(|z|>|a|\)
14 \(-na^{n}u[-n-1]\) \({\frac {az^{-1}}{(1-az^{-1})^{2}}}\) \(|z|<|a|\)
15 \(n^{2}a^{n}u[n]\) \({\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}\) \(|z|>|a|\)
16 \(-n^{2}a^{n}u[-n-1]\) \({\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}\) \(|z|<|a|\)
17 \(\left({\begin{array}{c}n+m-1\\m-1\end{array}}\right)a^{n}u[n]\) \({\frac {1}{(1-az^{-1})^{m}}}\), for positive integer \(m\) \(|z|>|a|\)
18 \((-1)^{m}\left({\begin{array}{c}-n-1\\m-1\end{array}}\right)a^{n}u[-n-m]\) \({\frac {1}{(1-az^{-1})^{m}}}\), for positive integer \(m\) \(|z|<|a|\)
19 \(\cos(\omega _{0}n)u[n]\) \({\frac {1-z^{-1}\cos(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}\) \(|z|>1\)
20 \(\sin(\omega _{0}n)u[n]\) \({\frac {z^{-1}\sin(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}\) \(|z|>1\)
21 \(a^{n}\cos(\omega _{0}n)u[n]\) \({\frac {1-az^{-1}\cos(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}\) \(|z|>|a|\)
22 \(a^{n}\sin(\omega _{0}n)u[n]\) \({\frac {az^{-1}\sin(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}\) \(|z|>|a|\)

Inverse Z Transform by Direct Inversion

This method requires the techniques of contour integration over a complex plane. In particular

\[f\lbrack k\rbrack=\frac1{2\pi j}\oint\limits_GF(z)z^{k-1}dz\]

The contour, \(G\), must be in the functions region of convergence. This technique makes use of Residue Theory and Complex Analysis.

Application to Discrete Time Filters

The \(z\)-transform might seem slightly ugly. We have to worry about the region of convergence, and stability issues, and so forth. However, in the end it is worthwhile because it proves extremely useful in analyzing digital filters with feedback. For example, consider the system illustrated below

Plots



We can analyze this system via the equations

\[v[n]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2] \]

and

\[y[n]=v[n]+a_{1} y[n-1]+a_{2} y[n-2] \]

More generally,

\[v[n]=\sum_{k=0}^{N} b_{k} x[n-k] \]

and

\[y[n]=\sum_{k=1}^{M} a_{k} y[n-k]+v[n] \]

or equivalently,

\[\sum_{k=0}^{N} b_{k} x[n-k]=y[n]-\sum_{k=1}^{M} a_{k} y[n-k]. \]

What does the \(z\)-transform of this relationship look like?

\[Z \sum_{k=0}^{M} a_{k} y[n-k]=Z \sum_{k=0}^{M} b_{k} x[n-k] \]

\[\sum_{k=0}^{M} a_{k} Z\{y[n-k]\}=\sum_{k=0}^{M} b_{k} Z\{x[n-k]\} \]

Note that

\[\begin{aligned}
Z\{y[n-k]\} &=\sum_{n=-\infty}^{\infty} y[n-k] z^{-n} \\
&=\sum_{m=-\infty}^{\infty} y[m] z^{-m} z^{-k} \\
&=Y(z) z^{-k}
\end{aligned} \]

Thus the relationship reduces to

\begin{aligned}
\sum_{k=0}^{M} a_{k} Y(z) z^{-k} &=\sum_{k=0}^{N} b_{k} X(z) z^{-k} \\
Y(z) \sum_{k=0}^{M} a_{k} z^{-k} &=X(z) \sum_{k=0}^{N} b_{k} z^{-k} \\
\frac{Y(z)}{X(z)} &=\frac{\sum_{k=0}^{N} b_{k} z^{-k}}{\sum_{k=0}^{M} a_{k} z^{-k}}
\end{aligned}

Hence, given a system the one above, we can easily determine the system's transfer function, and end up with a ratio of two polynomials in \(z\): a rational function. Similarly, given a rational function, it is easy to realize this function in a simple hardware architecture.

Poles and Zeros in the Z-Plane

It is quite difficult to qualitatively analyze the Laplace transform and Z-transform, since mappings of their magnitude and phase or real part and imaginary part result in multiple mappings of 2-dimensional surfaces in 3-dimensional space.

For this reason, it is very common to examine a plot of a transfer function's poles and zeros to try to gain a qualitative idea of what a system does.

Once the Z-transform of a system has been determined, one can use the information contained in function's polynomials to graphically represent the function and easily observe many defining characteristics. The Z-transform will have the below structure, based on Rational Functions

\[X(z)=\frac{P(z)}{Q(z)}\]

The two polynomials, \(P(z)\) and \(Q(z)\), allow us to find the poles and zeros of the Z-Transform.

Definition: zeros

The value(s) for \(z\) where \(P(z)=0\).
The complex frequencies that make the overall gain of the filter transfer function zero.

Definition: poles

The value(s) for \(z\) where \(Q(z)=0\).
The complex frequencies that make the overall gain of the filter transfer function infinite.


[Ex] \(H(z)=\frac{z+1}{\left(z-\frac{1}{2}\right)\left(z+\frac{3}{4}\right)}\)

The zeros are: \({−1}\)
The poles are: \(\left\{\frac{1}{2},-\frac{3}{4}\right\}\)


The Z-Plane

Once the poles and zeros have been found for a given Z-Transform, they can be plotted onto the Z-Plane. The Z-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable \(z\). The position on the complex plane is given by \(re^{j \theta}\) and the angle from the positive, real axis around the plane is denoted by \(\theta\). When mapping poles and zeros onto the plane, poles are denoted by an "x" and zeros by an "o".



[Ex] \(H(z)=\frac{(z-j)(z+j)}{\left(z-\left(\frac{1}{2}-\frac{1}{2} j\right)\right)\left(z-\frac{1}{2}+\frac{1}{2} j\right)} \nonumber\)

The zeros are: \(\{j,-j\}\)
The poles are:\(\left\{-1, \frac{1}{2}+\frac{1}{2} j, \frac{1}{2}-\frac{1}{2} j\right\}\)


Pole-Zero Cancellation

An easy mistake to make with regards to poles and zeros is to think that a function like \(\frac{(s+3)(s-1)}{s-1}\) is the same as \(s+3\). In theory they are equivalent, as the pole and zero at \(s=1\) cancel each other out in what is known as pole-zero cancellation. However, think about what may happen if this were a transfer function of a system that was created with physical circuits. In this case, it is very unlikely that the pole and zero would remain in exactly the same place. A minor temperature change, for instance, could cause one of them to move just slightly. If this were to occur a tremendous amount of volatility is created in that area, since there is a change from infinity at the pole to zero at the zero in a very small range of signals. This is generally a very bad way to try to eliminate a pole. A much better way is to use control theory to move the pole to a better place.


Repeated Poles and Zeros

Multiple poles or zeros at the same location can affect the system's stability and frequency response.


Now that we have found and plotted the poles and zeros, we must ask what it is that this plot gives us. Basically what we can gather from this is that the magnitude of the transfer function will be larger when it is closer to the poles and smaller when it is closer to the zeros. his provides us with a qualitative understanding of what the system does at various frequencies and is crucial to the discussion of stability.

Region of Convergence for the Z-Transform

The region of convergence (ROC) for \(X(z)\) in the complex Z-plane can be determined from the pole/zero plot. A ROC can be chosen to make the transfer function causal and/or stable depending on the pole/zero plot.

If the ROC extends outward from the outermost pole, then the system is causal.
If the ROC includes the unit circle, then the system is stable.


Frequency Response and Pole/Zero Plots

Based on the location of the poles and zeros, the magnitude response of the filter can be quickly understood. Also, by starting with the pole/zero plot, one can design a filter and obtain its transfer function very easily.


Region of Convergence of Z-transform

The S-plane is capable of representing signals such as complex exponentials. When performing Z transform on these signals, we represent these signals on an imaginary and real axis.

The output of these transformations could turn out to meet at a point or go in different directions. The particular signals that tend to meet at a point are the signals that lie in the Region of Convergence (RoC).

The Region of Convergence maps all the values for which the transform converges to a finite value.


Properties of Region of Convergence of Z-transform

Property 1: The Region of Convergence is a ring or circle in the Z-plane centred about the origin
Property 2: The Region of Convergence does not contain any pole.
Property 3: When the Region of Convergence incorporates a unit circle, X(z) converges uniformly
Property 4: With a finite \(x[n]\), your ROC is the entire z plane except when \(z=0\) and \(z=\infty\)
Property 5: The ROC includes \(z=\infty\) if the signal \(x[n]\) is causal
Property 6: The ROC includes 0 if the signal \(x[n]\) is non-causal
Property 7: If \(x[n]\) is both causal and non-causal, the ROC will be a ring
Property 8: The ROC is bounded by poles if x[n] is rational, which means it would extend to \(\infty\)
Property 9: For a right sided sequence (RSS) \(x[n]\), the ROC will not comprise 0
Property 10: When \(x[n]\) is rational, and both poles are RSS, the ROC will be outside the outermost pole.
Property 11: For a left sided sequence(LSS) \(x[n]\), the ROC will not comprise \(\infty\)
Property 12: When \(x[n]\) is rational and LSS, ROC will be inside the innermost pole.



https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Signal_Processing_and_Modeling/Signals_and_Systems_(Baraniuk_et_al.)/12%3A_Z-Transform_and_Discrete_Time_System_Design/12.05%3A_Poles_and_Zeros_in_the_Z-Plane

a5

ABCD

a6

ABCD

a7

ABCD

a8

ABCD