Laurent series
The Laurent series for a complex function \(f(z)\) about a point \(c\) is given by
\[f(z)={\textstyle\textstyle\mbox{$Σ$}_{n=-\infty}^\infty}{\textstyle a_n}{\textstyle{(z-c)}^n}\]
where \(a_n\) and \(c\) are constants, with \(a_n\) defined by a contour integral that generalizes Cauchy's integral formula:
\[{\textstyle{\scriptstyle a}_n}{\textstyle=}\frac1{2\mathrm{πi}}{\textstyle{\scriptstyle\oint}_\gamma}\frac{f(z)}{{(z-c)}^{n+1}}{\textstyle d}{\textstyle z}\]
Suppose that \(f(z)\) is analytic on the annulus
\[A: r_1 < |z - z_0| < r_2. \nonumber\]
Then \(f(z)\) can be expressed as a series
\[f(z) = \sum_{n = 1}^{\infty} \dfrac{b_n}{(z - z_0)^n} + \sum_{n = 0}^{\infty} a_n (z - z_0)^n. \nonumber\]
The coefficients have the formulus
\[\begin{array} {l} {a_n = \dfrac{1}{2\pi i} \int_{\gamma} \dfrac{f(w)}{(w - z_0)^{n + 1}}\ dw} \\ {b_n = \dfrac{1}{2\pi i} \int_{\gamma} f(w) (w - z_0)^{n - 1}\ dw} \end{array} \nonumber\]
where \(γ\) is any circle \(|w−z_0|=r\) inside the annulus, i.e. \(\;r_1<\;r\;<\;r_2 \)
Furthermore
The series \(\sum_{n = 0}^{\infty} a_n (z - z_0)^n\) converges to an analytic function for \(|z - z_0| < r_2\)
The series \(\sum_{n = 1}^{\infty} \dfrac{b_n}{(z - z_0)^n}\) converges to an analytic function for \(|z - z_0| > r_1\)
Together, the series both converge on the annulus \(A\) where \(f\) is analytic.
Conformal mapping
Laplace Transform
拉普拉斯轉換The Laplace transform is used where the Fourier transform cannot be used. The Laplace transform redefines the transform and includes an exponential convergence factor σ along with jω. Therefore, using the Laplace transform the time-domain signal x(t) can be represented as a sum of complex exponential functions of the form \(e^{st}\).
The advantage of using the Laplace transform is that it converts an ODE (Ordinary differential equation) into an algebraic equation of the same order that is simpler to solve, even though it is a function of a complex variable. The chapter discusses ways of solving ODEs using the phasor notation for sinusoidal signals.
In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace, is an integral transform that converts a function of a real variable (usually \(t\), in the time domain) to a function of a complex variable \(s\) (in the complex-valued frequency domain, also known as s-domain, or s-plane).
The Laplace transform is defined (for suitable functions \(f\)) by the integral:
\(ℒ\lbrack f(t)\rbrack=F(s) \overset{\rm{def}}{=} \int_0^{\infty} e^{-st}f(t)\,dt. \nonumber\)
Table of Laplace Transforms
\(f\left( t \right) = {\mathcal{L}^{\,\, - 1}}\left\{ {F\left( s \right)} \right\}\) | \(F\left( s \right) = \mathcal{L}\left\{ {f\left( t \right)} \right\}\) | |
---|---|---|
1. | 1 | \(\displaystyle \frac{1}{s}\) |
2. | \({{\bf{e}}^{a\,t}}\) | \(\displaystyle \frac{1}{{s - a}}\) |
3. | \({t^n},\,\,\,\,\,n = 1,2,3, \ldots \) | \(\displaystyle \frac{{n!}}{{{s^{n + 1}}}}\) |
4. | \({t^p}\), \(p > -1\) | \(\displaystyle \frac{{\Gamma \left( {p + 1} \right)}}{{{s^{p + 1}}}}\) |
5. | \(\sqrt t \) | \(\displaystyle \frac{{\sqrt \pi }}{{2{s^{\frac{3}{2}}}}}\) |
6. | \({t^{n - \frac{1}{2}}},\,\,\,\,\,n = 1,2,3, \ldots \) | \(\displaystyle \frac{{1 \cdot 3 \cdot 5 \cdots \left( {2n - 1} \right)\sqrt \pi }}{{{2^n}{s^{n + \frac{1}{2}}}}}\) |
7. | \(\sin \left( {at} \right)\) | \(\displaystyle \frac{a}{{{s^2} + {a^2}}}\) |
8. | \(\cos \left( {at} \right)\) | \(\displaystyle \frac{s}{{{s^2} + {a^2}}}\) |
9. | \(t\sin \left( {at} \right)\) | \(\displaystyle \frac{{2as}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\) |
10. | \(t\cos \left( {at} \right)\) | \(\displaystyle \frac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\) |
11. | \(\sin \left( {at} \right) - at\cos \left( {at} \right)\) | \(\displaystyle \frac{{2{a^3}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\) |
12. | \(\sin \left( {at} \right) + at\cos \left( {at} \right)\) | \(\displaystyle \frac{{2a{s^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\) |
13. | \(\cos \left( {at} \right) - at\sin \left( {at} \right)\) | \(\displaystyle \frac{{s\left( {{s^2} - {a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\) |
14. | \(\cos \left( {at} \right) + at\sin \left( {at} \right)\) | \(\displaystyle \frac{{s\left( {{s^2} + 3{a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\) |
15. | \(\sin \left( {at + b} \right)\) | \(\displaystyle \frac{{s\sin \left( b \right) + a\cos \left( b \right)}}{{{s^2} + {a^2}}}\) |
16. | \(\cos \left( {at + b} \right)\) | \(\displaystyle \frac{{s\cos \left( b \right) - a\sin \left( b \right)}}{{{s^2} + {a^2}}}\) |
17. | \(\sinh \left( {at} \right)\) | \(\displaystyle \frac{a}{{{s^2} - {a^2}}}\) |
18. | \(\cosh \left( {at} \right)\) | \(\displaystyle \frac{s}{{{s^2} - {a^2}}}\) |
19. | \({{\bf{e}}^{at}}\sin \left( {bt} \right)\) | \(\displaystyle \frac{b}{{{{\left( {s - a} \right)}^2} + {b^2}}}\) |
20. | \({{\bf{e}}^{at}}\cos \left( {bt} \right)\) | \(\displaystyle \frac{{s - a}}{{{{\left( {s - a} \right)}^2} + {b^2}}}\) |
21. | \({{\bf{e}}^{at}}\sinh \left( {bt} \right)\) | \(\displaystyle \frac{b}{{{{\left( {s - a} \right)}^2} - {b^2}}}\) |
22. | \({{\bf{e}}^{at}}\cosh \left( {bt} \right)\) | \(\displaystyle \frac{{s - a}}{{{{\left( {s - a} \right)}^2} - {b^2}}}\) |
23. | \({t^n}{{\bf{e}}^{at}},\,\,\,\,\,n = 1,2,3, \ldots \) | \(\displaystyle \frac{{n!}}{{{{\left( {s - a} \right)}^{n + 1}}}}\) |
24. | \(f\left( {ct} \right)\) | \(\displaystyle \frac{1}{c}F\left( {\frac{s}{c}} \right)\) |
25. | \({u_c}\left( t \right) = u\left( {t - c} \right)\) | \(\displaystyle \frac{{{{\bf{e}}^{ - cs}}}}{s}\) |
26. | \(\delta \left( {t - c} \right)\) | \({{\bf{e}}^{ - cs}}\) |
27. | \({u_c}\left( t \right)f\left( {t - c} \right)\) | \({{\bf{e}}^{ - cs}}F\left( s \right)\) |
28. | \({u_c}\left( t \right)g\left( t \right)\) | \({{\bf{e}}^{ - cs}}{\mathcal{L}}\left\{ {g\left( {t + c} \right)} \right\}\) |
29. | \({{\bf{e}}^{ct}}f\left( t \right)\) | \(F\left( {s - c} \right)\) |
30. | \({t^n}f\left( t \right),\,\,\,\,\,n = 1,2,3, \ldots \) | \({\left( { - 1} \right)^n}{F^{\left( n \right)}}\left( s \right)\) |
31. | \(\displaystyle \frac{1}{t}f\left( t \right)\) | \(\int_{{\,s}}^{{\,\infty }}{{F\left( u \right)\,du}}\) |
32. | \(\displaystyle \int_{{\,0}}^{{\,t}}{{\,f\left( v \right)\,dv}}\) | \(\displaystyle \frac{{F\left( s \right)}}{s}\) |
33. | \(\displaystyle \int_{{\,0}}^{{\,t}}{{f\left( {t - \tau } \right)g\left( \tau \right)\,d\tau }}\) | \(F\left( s \right)G\left( s \right)\) |
34. | \(f\left( {t + T} \right) = f\left( t \right)\) | \(\displaystyle \frac{{\displaystyle \int_{{\,0}}^{{\,T}}{{{{\bf{e}}^{ - st}}f\left( t \right)\,dt}}}}{{1 - {{\bf{e}}^{ - sT}}}}\) |
35. | \(f'\left( t \right)\) | \(sF\left( s \right) - f\left( 0 \right)\) |
36. | \(f''\left( t \right)\) | \({s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right)\) |
37. | \({f^{\left( n \right)}}\left( t \right)\) | \({s^n}F\left( s \right) - {s^{n - 1}}f\left( 0 \right) - {s^{n - 2}}f'\left( 0 \right) \cdots - s{f^{\left( {n - 2} \right)}}\left( 0 \right) - {f^{\left( {n - 1} \right)}}\left( 0 \right)\) |